Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching

Bastien Dussap , Gilles Blanchard, Badr-Eddine Chérief-Abdellatif bastien.dussap@inria.fr, gilles.blanchard@univerite-paris-saclay.fr, badr-eddine.cherief-abdellatif@cnrs.fr

# Label Shift Quantification

Consider a covariate space  $\mathcal{X} \subset \mathbb{R}^d$ , a label space  $\mathcal{Y} := [c]$ . Consider the Label Shift Hypothesis, where the test distribution  $\mathbb{Q}$  verified:

$$\mathbb{Q} = \sum_{i=1}^{c} \alpha_i^* \mathbb{P}_i \qquad (\mathcal{LS})$$

With  $\mathbb{P}_i = p(X|Y = i)$ . We have access to samples:  $\hat{\mathbb{P}}_1, \dots, \hat{\mathbb{P}}_c$  and  $\hat{\mathbb{Q}}$ . We also consider a new setting, Contaminated Label Shift defined as :

#### **Consistency of Distribution Feature Matching**

We make the following identifiability hypothesis on the mapping  $\Phi$ :

$$\sum_{i=1}^{c} \lambda_{i} \Phi(\mathbb{P}_{i}) = 0 \iff \lambda = 0$$

$$\exists C > 0 : \|\Phi(x)\|_{\mathcal{F}} \leq C \text{ for all } x.$$

$$(\mathcal{A}_{2})$$

**Theorem 1** If the Label Shift hypothesis  $(\mathcal{LS})$  holds, and if the mapping  $\Phi$  verifies Assumptions  $(\mathcal{A}_1)$ and  $(\mathcal{A}_2)$ , then for any  $\delta \in (0, 1)$ , with probability greater than  $1 - \delta$ , the solution  $\hat{\alpha}$  of  $(\mathcal{P})$  satisfies:

$$\hat{\alpha} - \alpha^* \|_2 \le \frac{2CR_{c/\delta}}{\sqrt{\Delta_{min}}} \left( \frac{\|w\|_2}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) \tag{1}$$



$$\mathbb{Q} = \sum_{i=1}^{c} \alpha_i^* \mathbb{P}_i + \alpha_0^* \mathbb{Q}_0. \qquad (\mathcal{CLS}$$

The distribution  $\mathbb{Q}_0$  is seen as a contamination, for which we have no prior knowledge nor sample.

Goal : Estimate the proportions  $\alpha^*$ . This is called Quantification [1].

## **Distribution Feature Matching**

Let  $\Phi : \mathcal{X} \to \mathcal{F}$  be a fixed feature map from  $\mathcal{X}$ into a Hilbert space  $\mathcal{F}$ . We extend the mapping to probability distributions on  $\mathcal{X}$ :

 $\Phi \colon \mathbb{P} \mapsto \Phi(\mathbb{P}) := \mathbb{E}_{X \sim \mathbb{P}}[\Phi(X)] \in \mathcal{F}.$ 

We call *Distribution Feature Matching* (DFM) any estimation procedure that can be formulated as the minimiser of the following problem:

 $\hat{\alpha} = \arg\min \left\| \sum_{i=1}^{c} \alpha_{i} \Phi(\hat{\mathbb{P}}_{i}) - \Phi(\hat{\mathbb{Q}}) \right\|^{2} \qquad (\mathcal{P})$ 

$$\leq \frac{2CR_{c/\delta}}{\sqrt{\Delta_{min}}} \left(\frac{1}{\sqrt{\min_i n_i}} + \frac{1}{\sqrt{m}}\right),\,$$

where  $R_x = 2 + \sqrt{2\log(2x)}, w_i = \frac{\alpha_i^*}{\tilde{\beta}_i}$ .

- The bound (1) improves upon existing bounds in the literature ([2, 3]).
- The (empirical) quantity  $\Delta_{\min}$  provides a natural criterion for the choice of the feature map hyperparameter.

## Robustness to contamination

In the Contaminated Label Shift setting, we aim at finding the proportions of the non-noise classes of the target. As these proportions don't sum to one, the "hard" condition  $\sum_i \alpha_i = 1$  is replaced by the "soft" condition  $\sum_i \alpha_i \leq 1$ .

$$\hat{\alpha}_{\text{soft}} = \underset{\alpha \in \text{int}(\Delta^c)}{\operatorname{arg\,min}} \left\| \sum_{i=1}^c \alpha_i \Phi(\hat{\mathbb{P}}_i) - \Phi(\hat{\mathbb{Q}}) \right\|_{\mathcal{F}}^2,$$

 $(\mathcal{P}_2)$ 

If  $\alpha_0^* = 0$ , then  $\|\hat{\alpha}_{\text{soft}} - \alpha^*\|_2$  is bounded by (1) and (2) with  $\Delta_{\min}$  replaced by  $\lambda_{\min}$ .

**Theorem 2** Introduce  $\overline{V} := \text{Span}\{\Phi(\mathbb{P}_i), i \in [c]\}$  and let  $\Pi_{\overline{V}}$  be the orthogonal projection on  $\overline{V}$ . If the Contaminated Label Shift hypothesis (CLS) holds, and if the mapping  $\Phi$  verifies Assumptions  $(\mathcal{A}_1)$  and  $(\mathcal{A}_2)$ . Then, with probability greater than  $1 - \delta$ :

$$\Delta^{c} := \{x \in \mathbb{R}^{c}_{+} : \sum_{i=1}^{c} x_{i} = 1\} \text{ is the } (c-1)$$
  
dimensional simplex.  
$$\mathbf{Related \ literature}$$

Kernel Mean Matching (KMM) [2]:

 $\Phi(x) = (y \mapsto k(x, y)) \in \mathcal{H}_k$ 

Black-Box Shift Estimation (BBSE) [3]:

 $\Phi(x) = (1\{\hat{f}(x) = i\})_{i=1,...,c} \in \mathbb{R}^{c}$ 

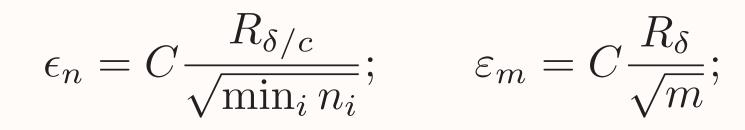
## Definitions

 $\hat{\boldsymbol{G}}_{ij} = \langle \Phi(\hat{\mathbb{P}}_i), \Phi(\hat{\mathbb{P}}_j) \rangle$  $\hat{\boldsymbol{M}}_{ij} = \langle \Phi(\hat{\mathbb{P}}_i) - \overline{\Phi}, \Phi(\hat{\mathbb{P}}_j) - \overline{\Phi} \rangle$ 

 $\Delta_{\min}$  is the second smallest eivenvalue of  $\hat{M}$  and

$$\|\hat{\alpha}_{\text{soft}} - \alpha^*\|_2 \le \frac{1}{\sqrt{\lambda_{\min}}} \Big( 3\epsilon_n + \varepsilon_m + \sqrt{2\alpha_0} \ \epsilon_n \ \|\Phi(\mathbb{Q}_0)\| + \|\Pi_{\bar{V}}(\Phi(\mathbb{Q}_0))\|_{\mathcal{F}} \Big), \tag{3}$$

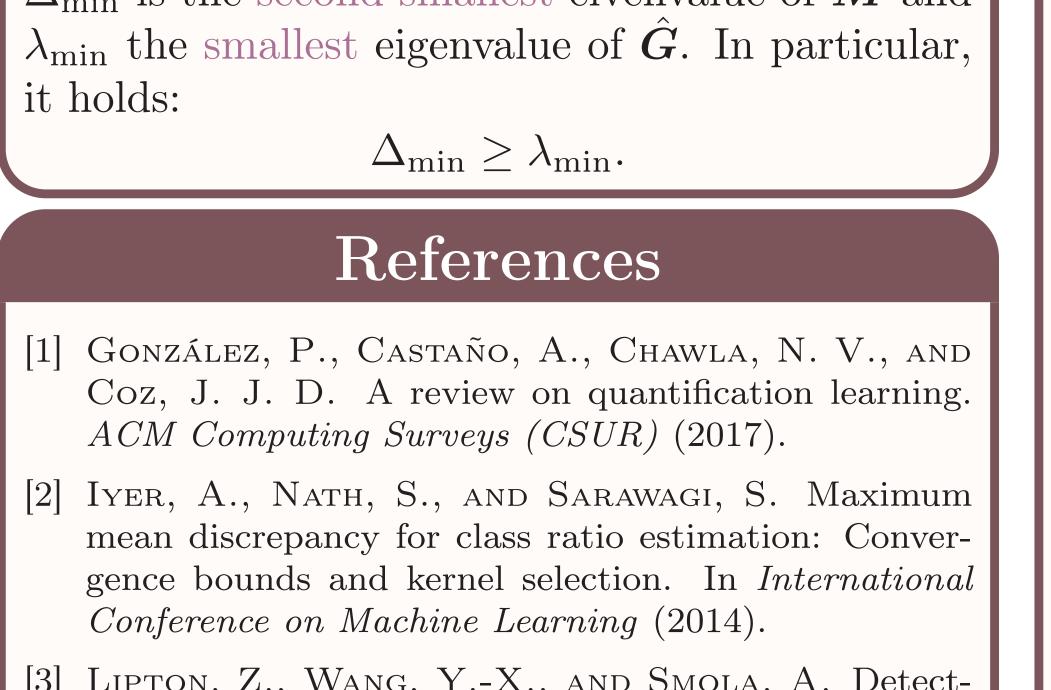
with:



- Bound (3) shows the robustness of DFM against perturbations  $\mathbb{Q}_0$  that are orthogonal to  $\overline{V}$ .
- For BBSE, the feature space is of the same dimension as the number of sources hence the orthogonal component will always be 0 and we expect no robustness property for BBSE.
- For KMM with a Gaussian kernel:  $\Phi(\mathbb{P})$  and  $\Phi(\mathbb{P}')$  will be close to orthogonal if  $\mathbb{P}$  and  $\mathbb{P}'$  are well-separated. We expect robustness property for KMM if the main mass of  $\mathbb{Q}_0$  is far away from the source distributions.

#### Experiments

The source is a list of c Gaussian distributions.  $\alpha_0^*$  ranges from from 0 to 0.3. We will test three kinds of noise  $\mathbb{Q}_0$ : uniform distribution over the data range, a new Gaussian with a mean distant from the other means and a new Gaussian with a similar mean to the source.



[3] LIPTON, Z., WANG, Y.-X., AND SMOLA, A. Detecting and correcting for label shift with black box predictors. In *International conference on machine learning* (2018).

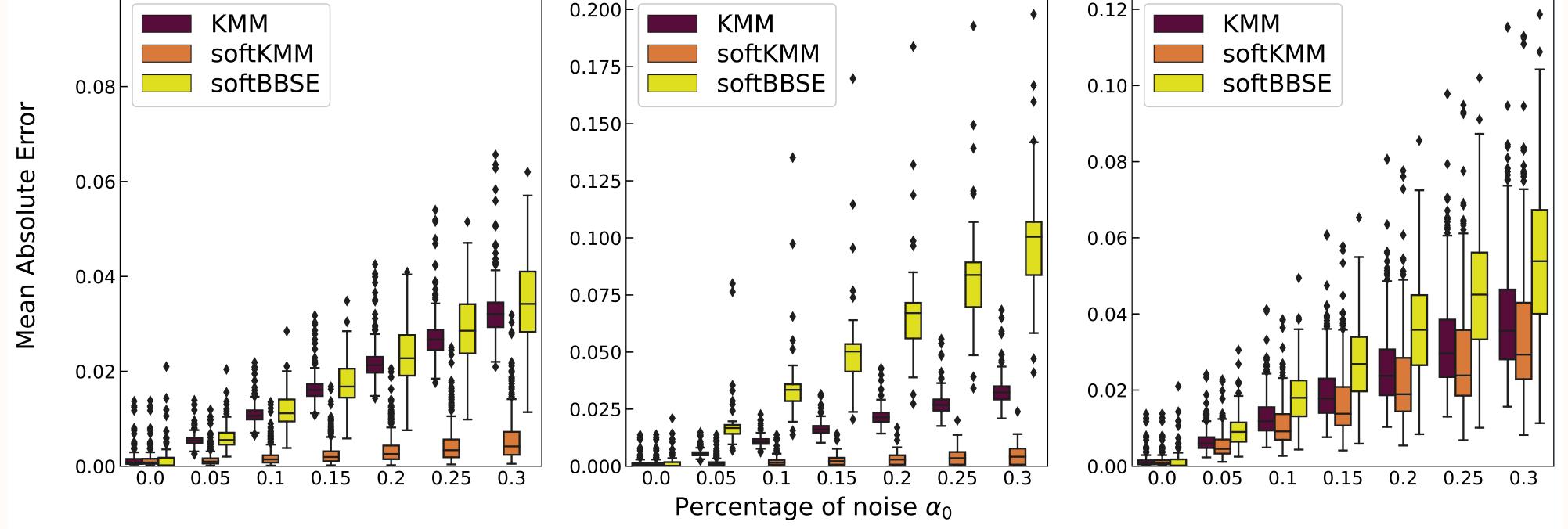


Figure 1: Robustness of the algorithms to three types of noise. Left: background noise; middle: noise is a new class far from the others; right: noise is a new class in the middle of the others.