
Label Shift Quantification with Robustness Guarantees
via Distribution Feature Matching

Bastien Dussap�, Gilles Blanchard, Badr-Eddine Chérief-Abdellatif
bastien.dussap@inria.fr, gilles.blanchard@univerite-paris-saclay.fr, badr-eddine.cherief-abdellatif@cnrs.fr

Label Shift Quantification
Consider a covariate space X ⊂ Rd, a label space
Y := [c]. Consider the Label Shift Hypothesis,
where the test distribution Q verified:

Q =
c∑

i=1

α∗
iPi (LS)

With Pi = p(X|Y = i). We have access to sam-
ples: P̂1, · · · , P̂c and Q̂.
We also consider a new setting, Contaminated La-
bel Shift defined as :

Q =
c∑

i=1

α∗
iPi + α∗

0Q0. (CLS)

The distribution Q0 is seen as a contamination,
for which we have no prior knowledge nor sample.

Goal : Estimate the proportions α∗. This is called
Quantification [1].

Distribution Feature Matching
Let Φ : X → F be a fixed feature map from X
into a Hilbert space F . We extend the mapping
to probability distributions on X :

Φ: P 7→ Φ(P) := EX∼P[Φ(X)] ∈ F .

We call Distribution Feature Matching (DFM)
any estimation procedure that can be formulated
as the minimiser of the following problem:

α̂ = argmin
α∈∆c

∥∥∥∥∥
c∑

i=1

αiΦ(P̂i)− Φ(Q̂)

∥∥∥∥∥
2

F

(P)

∆c := {x ∈ Rc
+ :

∑c
i=1 xi = 1} is the (c − 1)

dimensional simplex.

Related literature
Kernel Mean Matching (KMM) [2]:

Φ(x) = (y 7→ k(x, y)) ∈ Hk

Black-Box Shift Estimation (BBSE) [3]:

Φ(x) = (1{f̂(x) = i})i=1,...,c ∈ Rc

Definitions

Ĝij = ⟨Φ(P̂i),Φ(P̂j)⟩

M̂ij = ⟨Φ(P̂i)− Φ,Φ(P̂j)− Φ⟩

∆min is the second smallest eivenvalue of M̂ and
λmin the smallest eigenvalue of Ĝ. In particular,
it holds:

∆min ≥ λmin.
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Consistency of Distribution Feature Matching
We make the following identifiability hypothesis on the mapping Φ:

c∑
i=1

λiΦ(Pi) = 0 ⇐⇒ λ = 0 (A1)

∃C > 0 : ∥Φ(x)∥F ≤ C for all x. (A2)

Theorem 1 If the Label Shift hypothesis (LS) holds, and if the mapping Φ verifies Assumptions (A1)
and (A2), then for any δ ∈ (0, 1), with probability greater than 1− δ, the solution α̂ of (P) satisfies:

∥α̂− α∗∥2 ≤
2CRc/δ√
∆min

(
∥w∥2√

n
+

1√
m

)
(1)

≤
2CRc/δ√
∆min

(
1√

mini ni

+
1√
m

)
, (2)

where Rx = 2 +
√
2 log(2x), wi =

α∗
i

β̃i
.

• The bound (1) improves upon existing bounds in the literature ([2, 3]).

• The (empirical) quantity ∆min provides a natural criterion for the choice of the feature map
hyperparameter.

Robustness to contamination
In the Contaminated Label Shift setting, we aim at finding the proportions of the non-noise classes of
the target. As these proportions don’t sum to one, the "hard" condition

∑
i αi = 1 is replaced by the

"soft" condition
∑

i αi ≤ 1.

α̂soft = argmin
α∈int(∆c)

∥∥∥∥∥
c∑

i=1

αiΦ(P̂i)− Φ(Q̂)

∥∥∥∥∥
2

F

, (P2)

If α∗
0 = 0, then ∥α̂soft − α∗∥2 is bounded by (1) and (2) with ∆min replaced by λmin.

Theorem 2 Introduce V̄ := Span{Φ(Pi), i ∈ [c]} and let ΠV̄ be the orthogonal projection on V̄ .
If the Contaminated Label Shift hypothesis (CLS) holds, and if the mapping Φ verifies Assumptions
(A1) and (A2). Then, with probability greater than 1− δ:

∥α̂soft − α∗∥2 ≤ 1√
λmin

(
3ϵn + εm +

√
2α0 ϵn ∥Φ(Q0)∥+ ∥ΠV̄ (Φ(Q0))∥F

)
, (3)

with:
ϵn = C

Rδ/c√
mini ni

; εm = C
Rδ√
m
;

• Bound (3) shows the robustness of DFM against perturbations Q0 that are orthogonal to V̄ .

• For BBSE, the feature space is of the same dimension as the number of sources hence the orthog-
onal component will always be 0 and we expect no robustness property for BBSE.

• For KMM with a Gaussian kernel: Φ(P) and Φ(P′) will be close to orthogonal if P and P′ are
well-separated. We expect robustness property for KMM if the main mass of Q0 is far away from
the source distributions.

Experiments
The source is a list of c Gaussian distributions. α∗

0 ranges from from 0 to 0.3. We will test three kinds
of noise Q0: uniform distribution over the data range, a new Gaussian with a mean distant from the
other means and a new Gaussian with a similar mean to the source.
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Figure 1: Robustness of the algorithms to three types of noise. Left: background noise; middle: noise is a new class
far from the others; right: noise is a new class in the middle of the others.


